Radioisotopes in Medicine

Nuclear Issues Briefing Paper 26

November 1999


This is a branch of medicine that uses radiation to provide information about the functioning of a person's specific organs. In most cases, the information is used by physicians to make a quick, accurate diagnosis of the patient's illness. The thyroid, bones, heart, liver and many other organs can be easily imaged, and disorders in their function revealed. In some cases radiation can be used to treat diseased organs or tumours.


Diagnostic techniques in nuclear medicine use radioactive tracers which emit gamma rays from within the body. These tracers are generally short-lived isotopes linked to chemical compounds which permit specific physiological processes to be scrutinised. They can be given by injection, inhalation or orally. The first type are where single photons are detected by a gamma camera which can view organs from many different angles. The camera builds up an image from the points from which radiation is emitted; this image is enhanced by a computer and viewed by a physician on a monitor for indications of abnormal conditions.

A more recent development is Positron Emission Tomography (PET) which is a more precise and sophisticated technique using isotopes produced in a cyclotron. A positron-emitting radionuclide is introduced, usually by injection, and accumulates in the target tissue. As it decays it emits a positron, which promptly combines with a nearby electron resulting in the simultaneous emission of two identifiable gamma rays in opposite directions. These are detected by a PET camera and give very precise indication of their origin.

Positioning of the radiation source within the body makes the fundamental difference between nuclear medicine imaging and other imaging techniques such as x-rays. Gamma imaging by either method described provides a view of the position and concentration of the radioisotope within the body. Organ malfunction can be indicated if the isotope is either partially taken up in the organ (cold spot), or taken up in excess (hot spot). If a series of images is taken over a period of time, an unusual pattern or rate of isotope movement could indicate malfunction in the organ.

A distinct advantage of nuclear imaging over x-ray techniques is that both bone and soft tissue can be imaged very successfully. This has led to its common use in Australia where the probability of anyone having such a test is about one in three and rising.


Rapidly dividing cells are particularly sensitive to damage by radiation. For this reason, some cancerous growths can be controlled or eliminated by irradiating the area containing the growth, using gamma or x-rays externally. This irradiation can be carried out using a gamma beam from a radioactive cobalt-60 source, though in developed countries the much more versatile linear accelerators are now being utilised as a high-energy x-ray source.

Internal radiotherapy is by planting a small radiation source, usually a gamma or beta emitter, in the target area. Iridium-192 implants are now used frequently for this. They are produced in wire form and are introduced through a catheter to the target area - usually in the head and breast. After administering the correct dose, the implant wire is removed to shielded storage. This procedure gives less overall radiation to the body, is more localised to the target tumour and is cost effective.

Treating leukaemia may involve a bone marrow transplant, in which case the defective bone marrow will first be killed off with a massive (and otherwise lethal) dose of radiation before being replaced with healthy bone marrow from a donor.

A further important therapeutic application is the relief of cancer-induced bone pain, using strontium-89 or samarium 153.


It is very easy to detect the presence or absence of some radioactive materials even when they exist in very low concentrations. Radioisotopes can therefore be used to label molecules of biological samples in vitro (out of the body). Pathologists have devised hundreds of tests to determine the constituents of blood, serum, urine, hormones, antigens and many drugs by means of associated radioisotopes. These procedures are known as radioimmuno assays and, although the biochemistry is complex, kits manufactured for laboratory use are very easy to use and give accurate results.


Every organ in our bodies acts differently from a chemical point of view. Doctors and chemists have identified a number of chemicals which are absorbed by specific organs. The thyroid, for example, takes up iodine, the brain consumes quantities of glucose, and so on. With this knowledge, radiopharmacists are able to attach various radioisotopes to biologically active substances. Once a radioactive form of one of these substances enters the body, it is incorporated into the normal biological processes and excreted in the usual ways.

Diagnostic radiopharmaceuticals can be used to examine blood flow to the brain, functioning of the liver, lungs, heart or kidneys, to assess bone growth, and to confirm other diagnostic procedures. Another important use is to predict the effects of surgery and assess changes since treatment.

The amount of the radiopharmaceutical given to a patient is just sufficient to obtain the required information before its decay. The radiation dose received is medically insignificant. The patient experiences no discomfort during the test and after a short time there is no trace that the test was ever done. The non-invasive nature of this technology, together with the ability to observe an organ functioning from outside the body, makes this technique a powerful diagnostic tool.

A radioisotope used for diagnosis must emit gamma rays of sufficient energy to escape from the body and it must have a half-life short enough for it to decay away soon after imaging is completed.

The radioisotope most widely used in medicine is technetium-99m, , employed in over half of all nuclear medicine procedures. It is an isotope of the artificially-produced element technetium and it has almost ideal characteristics for a nuclear medicine scan. These are:

Its logistics also favour its use. Technetium generators, a lead pot enclosing a glass tube containing the radioisotope, are supplied to hospitals from the nuclear reactor where the isotopes are made. They contain molybdenum-99, with a half-life of 66 hours, which progressively decays to technetium-99. The Tc-99 is washed out of the lead pot by saline solution when it is required. After two weeks or less the generator is returned for recharging.


For some medical conditions, it is useful to destroy or weaken malfunctioning cells using radiation. The radioisotope that generates the radiation can be localised in the required organ in the same way it is used for diagnosis - through a radioactive element following its usual biological path, or through the element being attached to a suitable biological compound. In most cases, it is beta radiation which causes the destruction of the damaged cells. This is radiotherapy. Although this is a less common use of radioactive material in medicine, up to 150 patients are being treated this way each week in Australia.

Iodine-131 and phosphorus-32 are examples of two radioisotopes used for therapy. Iodine-131 is used to treat the thyroid for cancers and other abnormal conditions such as hyperthyroidism (over-active thyroid). In a disease called Polycythemia vera, an excess of red blood cells is produced in the bone marrow. Phosphorus-32 is used to control this excess.

A new and still experimental procedure uses boron-10 which concentrates in the tumor. The patient is then irradiated with neutrons which are strongly absorbed by the boron, to produce high-energy alpha particles which kill the cancer.

Considerable medical research is being conducted worldwide into the use of radionuclides attached to highly specific biological chemicals such as immunoglobulin molecules (monoclonal antibodies). The eventual tagging of these cells with a therapeutic dose of radiation may lead to the regression - or even cure - of some diseases.


Reactor Radioisotopes

Molybdenum-99: Used as the 'parent' in a generator to produce technetium-99m, the most widely used isotope in nuclear medicine.

Technetium-99m: Used in to image the skeleton and heart muscle in particular, but also for brain, thyroid, lungs (perfusion and ventilation), liver, spleen, kidney (structure and filtration rate), gall bladder, bone marrow, salivary and lacrimal glands, heart blood pool, infection and numerous specialised medical studies.

Chromium-51: Used to label red blood cells and quantify gastro-intestinal protein loss.

Cobalt-60: Used for external beam radiotherapy.

Copper-64: Used to study genetic diseases affecting copper metabolism, such as Wilson's and Menke's diseases.

Ytterbium-169: Used for cerebrospinal fluid studies in the brain.

Iodine-125: Used to evaluate glomerular filtration rate of kidneys and to diagnose deep vein thrombosis in the leg. It is also widely used in radioimmuno assays and as an x-ray source for bone density measurements.

Iodine-131: Widely used in functional imaging and therapeutic applications for the thyroid as in overactive and underactive thyroid, carcinomas and their secondaries; also diagnosis of abnormal liver function, renal (kidney) blood flow and urinary tract obstruction.

Iridium-192: Supplied in wire form for use as an internal radiotherapy source.

Iron-59: Used in studies of iron metabolism in the spleen.

Xenon-133, Xenon-127: Used for pulmonary (lung) ventilation studies.

Phosphorus-32: Used in the treatment of polycythemia vera (excess red blood cells).

Potassium-42: Used for the determination of exchangeable potassium in coronary blood flow.

Samarium-153 (and Strontium-89): Used to relieve the pain of secondary cancers lodged in the bone, sold as Quadramet.

Selenium-75: Used in the form of seleno-methionine to study the production of digestive enzymes.

Sodium-24: Used for studies of electrolytes within the body.

Yttrium-90: Used for cancer therapy and as silicate colloid for the treatment of arthritis in larger joints.

Cyclotron Radioisotopes

Gallium-67: Used for tumour imaging and localisation of inflammatory lesions (infections).

Thallium-201: Used for myocardial perfusion imaging for diagnosis and location of myocardial infarction (heart muscle death) and low-grade lymphomas.

Iodine 123: Used for diagnosis of thyroid function.

Rubidium-81, Krypton-81m: Krypton-81m gas can yield functional images of pulmonary ventilation, e.g. in asthmatic patients, and for the early diagnosis of diseases and function of the lungs.

Indium-111: Used for brain studies, infection and colon transit studies.

Carbon-11, Nitrogen-13, Oxygen-15, Fluorine-18: These are used in PET for studying brain physiology and pathology, for localising epileptic focus, and in dementia, psychiatry and neuropharmacology studies. They also have a useful role in cardiology. F-18 in FDG has become very important in detection of cancers and the monitoring of progress in their treatment, using PET.

What are radioisotopes?

There are 82 stable elements and about 275 isotopes of these elements. When a combination of neutrons and protons, which does not already exist in nature, is produced artificially, the atom will be unstable and is called a radioactive isotope or radioisotope.

Radioisotopes can be manufactured in several ways. The most common is by neutron activation in a nuclear reactor. This involves the capture of a neutron by the nucleus of an atom resulting in an excess of neutrons (neutron rich). Some radioisotopes are manufactured in a cyclotron in which protons are introduced to the nucleus resulting in a deficiency of neutrons (proton rich).

The nucleus of a radioisotope usually becomes stable by emitting an alpha and/or beta particle (or positron). These particles may be accompanied by the emission of energy in the form of electromagnetic radiation known as gamma rays. This process is known as radioactive decay.

Radioactive products which are used in medicine are referred to as radiopharmaceuticals.

Appendix to Nuclear Issues Briefing Paper 26

New reactor needed for medical imaging
- why cyclotrons cannot do the job

Article from May 1999 edition Australasian Science Magazine

June 1999

Rex Boyd defends the decision to commission a new nuclear reactor.

It is claimed by opponents of the nuclear industry that Australia's demand for medical radioisotopes can be met by cyclotrons. The truth is that any number of cyclotrons will never replace Australia's need for a reactor.

Australia has two cyclotrons, which use high voltages and electrical fields to accelerate hydrogen atoms through a vacuum chamber. When they collide with a target substance they produce radioactivity.

As a general rule, it is more difficult to make a radioisotope in a cyclotron than in a reactor. Cyclotron reactions are less productive and less predictable than nuclear reactions performed in a reactor.

The cyclotron produces neutron-deficient radioisotopes whereas the reactor produces neutron-rich radioisotopes. Thus the reactor and the cyclotron complement each other in satisfying society's need for a full range of radioisotopes; rarely one acts as a substitute for the other.

A few radioisotopes are exceptions to this rule and can be produced by either facility. One is technetium-99m, currently used in 85% of medical applications. The discovery that technetium-99m can be produced in a cyclotron does not imply that the need for a reactor is disappearing.

The half-life of technetium-99m is 6 hours. This means that this radioisotope must be produced and distributed on a daily basis.

However, when technetium-99m is produced in a reactor it proceeds through a precursor radioisotope, molybdenum-99, which has a half-life of 66 hours. Thus the weekly production of molybdenum-99 generators can meet all the technetium-99m needs of Australian hospitals.

In contrast the cyclotron does not produce molybdenum-99; instead it produces technetium-99m directly. Therefore a network of cyclotrons situated across Australia would be needed to make daily deliveries of technetium-99m to the nation's hospitals. This is one reason why none of the many powerful cyclotrons around the world are used for the manufacture of technetium-99m.

Reliance on cyclotrons for our most frequently used medical isotope would have a serious negative impact on the practice of nuclear medicine. The rapid decay of technetium-99m would limit the number of patients treated in any one day and would preclude the use of nuclear medicine techniques in out-of-hours emergency situations when stocks would be exhausted. Appointments would be subject to technetium-99m availability and patient waiting lists would lengthen.

Economic factors would also militate against cyclotron-produced technetium-99m. The raw materials for reactor production are cheap (a few dollars per kilogram) and readily available, whereas the starting material for the cyclotron-method is a rare form of molybdenum that must be enriched to high levels of isotopic purity (>99%), is not commercially available and would cost millions of dollars per kilogram.

Traces of other molybdenum isotopes in the raw materials can reduce the purity of the technetium-99m. A series of competing nuclear reactions produces undesirable longer-lived technetium radioisotopes, particularly technetium-96, that can accumulate during the day. The level of these impurities may exceed the legal limit and degrade the quality of the scanned image.

Other technetium radioisotopes would expose patients to higher radiation doses. Only 0.1% technetium-96 is necessary before radiation exposure of patients is doubled. Hence before cyclotron-produced technetium-99m could be used, certain regulations governing radiopharmaceutical quality would need changing.

The cyclotron production of technetium-99m is technically feasible but undesirable for all of these reasons.

The frontiers of nuclear medicine now extend beyond the diagnosis of disease with technetium-99m. Other short-lived radioisotopes are being introduced into nuclear medicine with the capability of reducing the pain associated with cancer. Australia must have its own reactor if its community is to have access to these radioisotopes and reap the benefits of the latest advances.

Rex Boyd was formerly the director of the $20 million National Medical Cyclotron Project at Sydney's Royal Prince Alfred Hospital.

Source for main paper: ANSTO, and papers at 1999 ANA conference

For further information Search this UIC Site or Return to Index
Published by Uranium Information Centre Ltd
A.C.N. 005 503 828

GPO Box 1649N, Melbourne 3001, Australia
phone (03) 9629 7744
fax (03) 9629 7207
Email :