A COMPARISON RESEARCH MODEL FOR ADULT DISTRIBUTED TRAINING

by

Bradley S. Barker

A DISSERTATION

Presented to the Faculty of
The Graduate College at the University of Nebraska
In Partial Fulfillment of Requirements
For the Degree of Doctor of Philosophy

Major: Interdepartmental Area of Administration, Curriculum & Instruction
(Instructional Technology)

Under the Supervision of Professors David W. Brooks and David Fowler

Lincoln, Nebraska
December, 2002
TABLE OF CONTENTS

I. INTRODUCTION
- Context of the Problem
- Purpose of Study
- Research Questions
- Significance of Study
- Definition of Terms

II. REVIEW OF LITERATURE
- Significant Historical Factors
- Adult Distance Education and Distance Training
- Early Childhood Education
- Effectiveness of Educational Technology
- Media Comparison Studies
- Research Methods
- Educational Technology Research Methods
- Distance Training Research
- Costs Benefits of Distance Training
- Defining Costs

III. A MEDIA-COMPARISON RESEARCH MODEL
- Introduction
- Developing a Framework
- Instructional Objectives
- Degree of Interactivity
- The Delivery System
- Research Questions
- Experimental Design of Media Comparison Studies
- Validity Controls
- Power and Sample Size
- Effect Size and Confidence Intervals
- Confounding of Variables (Teacher Effect)
- Instrumentation Reliability
- Costs Comparisons

IV. METHODOLOGY
- Introduction
- Research Design
- Participants
- Instructional Content
- Demographics and other materials
- Procedures
- Database Structure
Appendix H Follow-up Reminder to Research Participants 158
Appendix I Cost Calculations 160
Appendix J Letter to Experts 165
Appendix K Treatment Group Survey Responses 175
Appendix L IRB Documents 188

LIST OF FIGURES AND TABLES

Table 3.1 Sample size needed to detect f by F test Alpha = .05 with 1 Degree of Freedom 45
Table 3.2 Sample size needed to detect f by F test Alpha = .05 with 2 Degrees of Freedom 46
Table 4.1 Treatment Group Personal Information Table 58
Table 4.2 Treatment Group Consent Table 59
Table 4.3 Treatment Group Student Quiz Results Table 60
Table 4.4 Treatment Groups Quiz Table 60
Table 5.1 Means and Standard Deviations on Assessment Instruments 64
Figure 5.1 Boxplots of pretest and posttest scores by group 65
Figure 5.2 Boxplots of pretest and posttest scores by group 68
Table 5.2 Cost Components for the Classroom 72
Table 5.3 Facilities Replacement Costs 74
Table 5.4 Cost Components for Classroom Materials 74
Table 5.5 Cost Components for Student Costs 76
Table 5.6 Cost Components for First Connections 78
Table 5.7 Costs, Effects and Cost-Effectiveness Ratios (mean difference) 79
Table 5.8 Costs, Effects and Cost-Effectiveness Ratios (mean difference) forgone salary removed 80
Table 5.9 Means and Standard Deviations for Survey Variables by Treatment Group 81
Table 5.10 Means and Standard Deviations for Content Scale 82
Table 5.11 Means and Standard Deviations for Presentation Scale 83
Table 5.12 Means and Standard Deviations for Student Reaction Scale 84
Table 5.13 Means and Standard Deviations and Significance within Groups Pretest 88
Table 5.14	Means and Standard Deviations and Significance within Groups Age	89
Table 5.15	Means and Standard Deviations and Significance within Groups Job Experience	89
Table 6.1	95% Confidence Intervals for Dependent Variable Posttest	92
Table 6.2	Sensitivity Analysis of Class Size on Costs Effectiveness Ratios	94
Figure 6.1	Cost Effectiveness (CE) per group based on the number of students	95
Table 6.3	Sensitivity Analysis of Opportunity Costs for Costs, Effects and Cost-Effectiveness Ratios (mean difference)	97
Figure 6.2	Inverse relationship between online CE ratios and number of students.	98
Table 6.4	Descriptive Statistics for Survey Variables	99
This study presented a comparison research model to examine the effectiveness and cost-effectiveness of online adult distributed training compared to a traditional classroom setting. The model was applied to First Connections, an online infant and toddler care provider training program.

One hundred and thirteen participants were given a pretest composed of 40 questions prior to training. The control group (n=29) received training in a traditional community college classroom. Treatment group 1 (n=26) received training online but chose to receive continuing education credits (CEU) instead of college credit. Treatment group 2 (n=58) received training online and 4.5 college credits. A demographic survey was administered to all three groups. Posttests were administered to each group at the end of the training. Treatment groups completed a 55-item 5-point Likert-type after training to measure three variables: content, presentation and student reaction.

Posttest scores indicated no significant differences between groups $F(2, 59) = 2.58$, $p = 0.084$. The reliability of the testing instrument was established using a Cronbach’s alpha (0.77) and experts ratings. Mean scores and alpha coefficients for the content, presentation and student reaction were ($M = 3.98$, $\alpha = 0.86$; $M =
3.73, $\alpha=0.90$; and $M = 4.05, \alpha=0.84$) respectively. Attrition bias was examined and no significant differences were found in pretest scores, age or job experience between participants who completed the training and those who did not.

A cost-effectiveness analysis indicated ratios of $1,791 for the control group, $4,019 for treatment group 1 and $2,557 for treatment group 2. The cost-effectiveness ratio (CE) for the combined online group was $1,557. The study revealed that CE ratios decrease with increased enrollments in the online groups.

The study concluded that First Connections set standards for infant and toddler care in Nebraska, a stated goal of the program. In less than two years, 10% of all providers in the state had participated to some degree in First Connections, increasing the continuity of care.
I wish to thank my mentor, Dr. David W. Brooks, who over the course of one Thai lunch challenged me to pursue a doctoral degree. His unyielding support, encouragement, and advice made this dissertation possible.

I want to acknowledge my committee members, Dr. David Fowler for his insight and timely counsel, Dr. Charles Ansorge for his significant knowledge, and Dr. James King for his through reviews and recommendation.

Thanks to my wife Lea and daughter Katie; thank you for your love and support. You are the reason and the why. I am grateful to all the Grandma’s and Grandpa’s, Mom’s and Dad’s, Aunt’s and Uncle’s, and friends near and far that assisted in this endeavor.

Finally, I would like to acknowledge Linda Meyers and the Nebraska Department of Education Office of Early Childhood Education. Without their support, this research would not be possible. Deb Thomas, Barb Jackson and Guy Wiley who gave freely of their time and expertise, thank you. Also thanks to Peg Sheldrick for her excellent wit and perseverance.

“Let’s Roll”

Dedicated to all victims of terror.